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TNTRODUCTICK

Rquipment dsvslcped in this Laboratory permits tha determination of
eight of the dynimic coefficients useful in describing the force and
nomsnt reactions cn 3 submerged body moving in water. ‘Thease coefficients
e.iviee the partial derivatives of moment (about the yaw axis) and of
+.208 (in the horizontal plans, and parpandicular to the longitudinal axis)
with reapect tc walocity ar ! scteleration components in specified uirso-
tions. So long as the instantanecus angles of attack . small and zcsle
effects ars absent, these coefficients hawve constant valucs. A coxplete
list of coefficients is given in Ref. (1), as are definitions, sign con-
ventions ani formulas for meking the ccefficients nondimensiomal. The
eight coefficients tabulated below are those pertinent to lateral trans-
latiop and rotation about the yaw axis for a body of revolution:

¥ ' coefficient of rotary moment derivative

N;' virtual aoment of inertia cosfficient (angular acceleration)
NV cosfficient of static moment derivative

Ne' virtaal noment of inertia coefficient (lateral acceleratiom)
1.t cofficient of rotary force deriwative

Y,' virtual inertia cosfficient (angular acceleration)

Y ' coefficient of static force derivative |

Y,! virtusl inertia coefficient (lateral acceleratior)

where the prine indicates that the coefficients ars in dimensionless
$omm.

It im the purpose of tiw cxpcriu;nm wograe undertaksn gt tais
Iabcratory to detersine the numerical wvaluss of the above quantaties for
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the Basic Finner missile (Fig. 1). Because of the riquirad differences
in the experimental methods, however, the program was divided into two
parts, This report deals only with Part 1, and is restricted to the
following quantities: 3:';‘ s H?’ s YI;' ’ Iv', and the linear cosbinations
Nr‘ - H;,‘ and Yr' - Y;,‘ . Remaining quantities will bs the subject of
anothor report. |

APPARATUS

The jrovedurs used to obtain the dynamic moment coefficients is based
on the measwrement of the amplituds ratio and phase angle o. the model while
it is oscillated at a known frequency in the moving stream of wmater. For
this purpoas the Angular Dynamic Balance was used, in conjunction with the
High Spesed Water Tunnel at this Laboratory. A complete discussion and des-
cription of the equipment is given in Ref. 2, tnt a trief summary is given
heis s -

The balance can be regarded as consisting of ssveral separate function-
al componante (Fig. 2). The first o thess is the platform - platform
drive asseably. This unit consists of a platfors to which can bs imparted
a mll angular oscillation of known amplitude and controllable frequency.
To 4% is coupled the apwéh—nodol aspeably which is fres to rotate on ball
bearings and which is provided with a witor seal to prevent leakage of tunnel
watar to the outside. Tbe ocoupling meslier is a calibrated torsion spring
of controilable stiffness. 7Two mirror-iens systems, one of which is carried
by the driving platform and the other by the spindle, ensble the cbsarver to
measure the angular deflections of sach of these comoonents with respect to
ground. By projecting the image of a pulsing light source (triggered by
contacts on the drive assembly) the ;ngula:vr deflection at a given instxrit



in the cycla can be msasured. The contactor body is rotated through known
angular increments and the deflections taken., Ry plotting these data and
by reprsasnting the obserwed motions in Fourier series, the amplitude and
phase angles of the fundamental motion of both driver and spindle can be
deternired. .

A seif-contained lateral force balance, using bonded strain gages,
serves a3 the center section of the model sssembly. Thiz unit measures the
instantansous 23idé force acting on the model and relates it to the instan-
tanecus position of the driving platform.

TERORETICAL AMALYSIS

Up to this point the balance has been regarded as a harmonic oscillator
which permits complete analysis of the motions of both the driving platform
and of the spindle-model assembly. Ry running the balance in air, and bty
performing tiis necessary computations, the spindle-model assembly is found
to possess & certain moment of inertia and little or no demping with respect
to ground. Similarly the internal (lateral force) balance shows that the
center of gravity of the model asasmbly coincidse very closely with the axis
of angular cscillation. This fact is indicated bty the abesence of auy
measured periodic lateral force in the presence of the anplar motion.

Then the tunnel is filled with water which is moving relativs to the
model, the behavior of the model is strikingly different. Analysis of the
motions of the platform and spindle shaws that the spindle "sees® a larger
mass, coupled to ground timough a spring, and possessing a degree of damping
with respsct te ground. This spring can either aid or opposs the model dis-

| placement and the damping can be positive or negstive. In similar fashion,

the internal balance shows that periodic side foroes are pressnt which behave
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as though caused by oscillating a larger mass, coupled to ground by a
spring, and glno' posssgsing aome smount of damping.

The relationship between the inastantansous forces and moments exarted
by the spindle on the model and the resulting motion of the model can be
given in terms of the effective physical parameters of the system and tie
angular displacement B, of the model:

»f, - bB, - kB =T (1)
18, + BB, + KB, = N ()

where the sign convention has been chosen to facilitate finsi expression of
the desired hydrcdynamic coefficients. In theae squations

= total apparent mass of the model

= lateral force dmpiaé coafficient of modsl with reaspect to ground
= effective lateral spring rate with respect to ground

total effective moment of inertia of model in water

= torsional dasping moment coefficient of modsl

® w - W T B
n

= offective torsional spring rats with respect to ground

These apparent physical properties of the model and model-spindle assembly
are 5 resuit of ths hydradynamic forces acting on the model., For ths small
oscillations executed by ths modol and for the gaall instantaneous angles of
attack, the hydrodynamic reactions can bs regarded as comprising the sum of
the indiv*dual reactions arising from disp.acement, valocity, and accelerati
in the direction of motion, Letting N equal the ¢total hydrodynamic moment
acting on the body about the yaw axis and Y equal the total hydrodynmmic
lataral force, then

K = N“u + R&n + Rv'ir + }{&# + lirr + Eﬁér (3)
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where subscripts indicate partial derivatives in accordance with the iist
of symbols on rage 13 and

U au velocity of body axis relative to fluid at infinity.

r = ﬁ angular velocity of model about the yaw axis,

1o

v o~ ﬁo component of velocity of body axis relative to fluid
in ths direction perpendicular to the longitudinal
axis and in the horizontal plans.

v2-UB, component of acceleration of bedy relative to fluid

in the direction perpsndicular to ths 1ongﬁ.tudiml
axis and in the horisontal planes.

Since the body in question possesses rotation symmetry, the following terms
sust vanish for sonstant u.

N o, N.u, Yu, and Y.u.

Equation (3) can therefore be rewritten in as
= N By, + (N, -K U) B ~N Uﬁm

¥ 4 (h)
T=Yf v (-1, 0 B -, U8
For the present case, tha center of gravity of the test body was very nearly

at the center of rotation, go that all side force reactions were hydrodynamic
in origin, o

Y=y, (5)

Also, the mowent reaction on the spindle dus to damping and displacement in

&ir was zeroy therefore the only nonhydrodynasic rasaction was dus to the
moment of inertia of the aspindle-model agsembly, or



¥= 5B, -8, (6)
80 that by combining terse in (1), (2} and (L), and substituting in (5)
 and (6), the hydrodynamic coefficients van be identified with the sffective

~ physical quantities chsr:c'bsristie of vibrating mass systams:

n = - Y!" b = (’fr - Iv', u) k = -—rv [i]
(N
' If = -Ni‘ B = (NI‘ - NV ) K = HV U

where U 1is the constant relative fluid velocity at a great distane from
the body. .

The experimentsl problem then rcduces to one of finding the nimerical
valuss of these effective physical constants, m, k, I, B, and K, by
whatever meens aval lable. ’rhcA dmanic balance and its &« cessory inatru-
mentation provides this means. If the equations of motion for the system
are formulated, the following pair of equations is obtained:

LBy + BBy = K(B, - By - K B -B)

(8)
o ¥ K 99'% Ky (al'go)

where ths symbols are &s definad on page 12 and as showm in the squivalent
linear analogy of the moment measuring apparatus in Fig. 2. From these ex-
pressions can be obtained the steady-state soiution

. “‘1
< 2 2
1 iob +
A I L SN L)
K. & ‘
xs Al

(9)
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which reduces to
L+ In® IaB|™ x#K K, ‘}' ,;
X X K XK K 2 2 ~
] [ 8 ] aAl |
vrhen terms containing the negligible quantities I' and B' are dropped.
The real part of this equation identifies the in-phase component and
the imaginary part idantifies the quadrature component. From this ex-
pression the effactive physical constants I, B, and K, can be found,
accoxding to the method to be described later. Similarly, the expression
“o P ' xcl
-—-{‘c” (60- %)-1.“(60—62) a-s;ju-—“'
A K
2 s
K+, Lo 1wp | [
- — cos (& = 8,) - 1 sin ( &, - 6,)
K i X
_ 8 8 (]
Eirst reduces to
(20)

R

A ' K, k +K ._
— "cos (8, = 9,) -41sin (S ~6,) =~ 24 -‘-‘.-;-.-!. cos(8,~5,) - sin (61"‘62)—{

A, K

L/ 8

and can ba svlved to give the amplituds and phase angle of the model in terms
oX measurabls quantities, This information is required for subssquent evalu-
ation of the :m;exjal forces msaaured by the internal strain gage balance

a ssembly, since; with the prasent setup, the internzl balance actually meas-
wres phasa augle ralstive to the motion of the driving platform. The
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Jateral force iz related to the effective physical constants; m; b; and
%k, through the steady-state relation

o~ | - 2 .
¥ | cos Gf*iai.n'SrJ*-[(x-nm)-l-iwb A, (11)

where F inthopoakvﬁmotthohmaltmoandﬁf is the phase argle of

this foros relative to the motion of the model. R

RuDUCTION AND ANALYSIS CF DATA

Equation 9 is sesn to be a complex expression of the form

1
a.+‘:!.h

wiich can be raticnalized to yield

e a
= 3 and b ® e —p——s;
* ¢ +d ¢ + d2 (13)’
vhex's r
| 1,00
a= | (Q+gs=)( L) |
n 8
T ° (1L}
ba | ©B
a

By plotting a~ against w? (Fig. 3) and measuring the aslope a/xs) and
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y-intercept (1 + x/x,) two of the squivalent physicel conatants are found
in terms of the known spindle spring rate. Similarly, if b is plotted
against o (Fig. L) the slope of the reaulting lines is oqual to B/Ka.
An analagovs treatment of the lateral foroe equation (11) in Figs. 5 and 6
ylelds the quantities m, b, and k. Thewe equivalent physical peramsters
are then squated to the appropriate hydrodynamic cosfficients according to
Xq. (7) and nondimensionalised, as indicited in Ref. 1. The resulting
dynamic coefficients have been plotted sgainst Reynolds rmmber in Fia{. 7
to 12. The use of Reynolds nmumber as ih¢ simiiitude parameter does not
imply an a priori judgaent that viscosity effects are paramount in deter-
xining the magnitude of these coefficients. Indeed, for the experimental
setup available for this study, where the model size and fluid viscosity
were fixed, the Reynolds number change indicates only a change in velocity,
mm»tothum of the model support spindle and spindie
shield was estimated by the image method, That is, supplementary runs were
mads with a dumy support spindle shield on the side of the model opposite
the real suppo;t spindle and shield. This dummy did not touch the model.
The deta points taken with this iwmege in place ars indicated bty solid sym-
bols in the final curves. It is asswmed that the presence of the dumer
shield produces the same effact as the original functional spindie and
spindie shield; hence the final cwrve is taken to be displaced an amount
equal to the differsnce betwoen the originsl runs and the imsge runs, and
in the direction of the original runs. In some cazes thqhmonce of the
iwage strut hed no effect on the values of the coefficients; for these no -
image runs wors plotted. |
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SUMMARY OF HESULIS
(1) W', Virtual Momeat of Inertia Coefficient (Pig. 7):

This coefficient is nearly independent of velocity, as predicted
ly perfect fluid theory, and shows little or no semsitivity to the presence
of the support spindle. '*

(2} B, Costficient of Static loment Derivative (Pig. 8)1

This coefficient is a measure of the moment component due to
velocity perpendicular to the longitudinal body axis, For ssall angles
of yaw this is seen to be identical to the static moment rate, d c'/dn,
and for this veason it aom: &s a good check on the experimsntal and com-
putational procodures. The agreement betwsen the valuss reported in Fig. 8
and those reported in Ref. (3) are very good, even as to the effect of the
presence of ths support spindle.

(3) N.' - Ng'. Combined kioment Coefficient (Pig. 9):

Actually a linear combination of the coefficient of Rctary Moment
Derivative arid the Virtual koment of Inertia Coafficient (to lateral
acceleration), canmot be resolved without further experiments, which are
to be conducted at a later time. |

(L) Yy', Virtual Inertis Cosfficient (angular acceleration) (Fig, 10):

This quantity is migligibly small in the presence of the ponderable
vﬂm of !" .

(5) Y,'s Coefficient of Static Force Derivative (Fig. 11):

The analog to item (2) above, can e identiiied with the slope of
the static 1ift coefficient curve o GL/& found by conventionsl stavic
balance measurements. As with item (2), the agressment with previous static



e

neasureaemts (Ref. 3) is excellent.
(6) T.' - Y.'5 Combined Lateral I'arce Coefficient (Fig. 12):

As with item (3), this coefficient camnot be completely
analysed until the second phase of this investigation is completed.
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LIST OF SIMBOLS

The wotion of the test body i restricted to tne plene of yaw. The sym-
bols used to describe this motion and the associated rvdrowmic reaciicns on
the body are in the greater part identical to thoss rscovmended in the Tech-
nical and Research Bulletin N. 1-5 of ths Society of Nawal irchitects and
Marine Engineers titled "Nomsnzlature for Treating the Liotion of a Submerged
Body through a Fluid®, These syabols are marked with an asterisk(s) in the
following list.

The coefficients have been mede non-dimensional in accordance with pi -

cedures outlined in the dove publication. Dimensionless quantities are
primed; all other quantities are in the pound-foot-second system of units,

# A

Aos ‘1"2
b
B
Bu‘
d
r
i

cross section area of model

peak half amplitudes of action of body, support spindle
and drive platforwm

damping coefficient in Xq. (1)
torsional damping coefficient in Eq. (2)
torsisnal damping rata of spindle seal

diameter of model
peak magrituds of lateral force in the horimntal plane

= of]

I =1, +I,total effective moment of inertia of model in water (Eq. (2))

Ty

aoment of inertia of model

apparent noment of inertia of modsl assembly due
to hydrodynamic reactions

moment of inartia of model-support spindle

effective sprirg rats dus to hydrodynamic reactions (Bq. (1))
sffactive torsional spring rates due to hydrodynamic reactions (Eq.2)
torsional spring rats of drive apring which couples the

driving platform to the apindle-modeal sssesbly

torsional spring rate of model support apindls

length of body
apparant mass of model dus to hydrodynamic reastions (BEgq. (1))

4y
i




LIST OF SYMBOLS (comt'd)

Rydrodynamic monent acting on the model

Nsﬂ- N wmoment on body supplied by support spindle
“r = Rr‘ 1/ prdzn) coeffioient of rotary moment derivative
N, = N.' (1/%pA0%)  virtual moment of inertia coafficient

(anguXar accelerstion)|

N, =N ' (1/24d U) coefficient of static moment derivative
N, = N, (1/20A0°)  virtusl moment of inertia coefficient

e

~ {latersl acceleration)

angular velocity about the yaw axis
velocity of body axis relative to fluid at infinity

component of walooity of body axis relative to fluid
in the directiun parallel to the longitudinal axis

cumponent of velocity of body axis relative to fluid
in the direction perpendicular to the longitudinal
axis and in the horisontal planwe

hydredynamic lateral foroc acting on the model
lateral ferce on the modsl supplied by the support spindls

» Y, =Y.' (1/2pAdU)  coefficient of rotary force darivative

* LR A (1/2044%)  virtual inercia coefficient (angular acceleration)

*Y, =Y (/M)  coefficient of static force derivative

*v.= 1;' (1/20Ad)  virtual inertis coefficient (lateral accelsration)

ﬂos @13 e 2

693 613 82

g‘@ﬁa

4

angular displacement about the yxw axis of the model,
spindls, and drive platfora

phucmmntofmmtimotthem:t, spindie, and
drive platform

phige angls of the lateral force relative to model motion
sass density of £ludd
circular frequency; £ = fraquency in cycles par second
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Fig. 11 - Coefficient of static force derivative as a function
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Fig. 12 - Combined lateral force ccefficient as a function
of Reynolds number.
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